汤琨

微电子与光电子学系 博导

个人简历

20062011年分别在金沙威尼斯欢乐娱人城基础学科教学强化部和物理学院获理学学士和工学博士学位
2011-2014
年在新加坡科技局——数据存储研究院(Data Storage Institute, A*STAR)担任科学家
2014-2017
年在金沙威尼斯欢乐娱人城担任专职副研究员
2017
年被聘为金沙威尼斯欢乐娱人城副教授,硕士生导师

2022年被聘为金沙威尼斯欢乐娱人城副教授,博士生导师

研究方向

汤琨长期从事宽禁带半导体材料与器件的研究工作,特别是在氧化物及金刚石材料生长、掺杂调控、缺陷机理、纳米器件等领域取得丰富的研究成果;在包括Appl. Phys. Lett., Environ. Sci. & Technol., ACS Appl. Mater. Interface, Adv. Mater. Technol.,  Appl. Surf. Sci., J. Alloy. Compd. 等在内的国际著名期刊上发表70余篇SCI论文,引用1000余次,授权国家发明专利数项


主持项目:

[4] 国家自然科学基金面上项目,No. 61974059,基于TiN-ZnO异质结和ZnO微纳米柱的多功能太阳光收集转化系统,2020.1 – 2023.12,在研

[3] 国家自然科学基金面上项目,No. 61674077,基于表面等离子激元共振的TiN/ZnO超材料的设计、制备、性质及光催化器件的研究,2017.1 – 2020.12,已结题

[2] 国家自然科学基金青年基金,No. 61504057,N掺杂ZnO中补偿施主与受主形成机制的研究,2016.1 – 2018.12,已结题
[1] 江苏省自然科学基金青年基金,No. BK20150585,等价元素-受主共掺增强氧化锌p型导电机制的研究,2015.7 – 2018.6,已结题

主要课程

《半导体器件基础》,本科三年级
《半导体光电子材料与器件》,本科一年级
《高等半导体物理》,研究生

代表成果

2024年

[60]The regulation effect of trace amount of oxygen on the properties of ptype boron-doped diamond”, J. Mater. Res. DOI:10.1557/s43578-024-01312-w (2024). (G. Y. Zhao and K. Tang*)

[59]“Formation mechanism of SiV in diamond by unintentional silicon doping by microwave plasma chemical vapor deposition”, Vacuum 222, 113027 (2024). (K. Yang and K. Tang*)


2023年

[58] Farming on the Ocean via Desalination (FOOD)”, Environ. Sci. Technol. 57, 21104 (2023). (Y. Bian and K. Tang*

[57] High efficiency of boron doping and fast growth realized with a novel gas inlet structure in diamond MPCVD system”, Carbon Lett. https://doi.org/10.1007/s42823-023-00651-8 (2023). (Y. Teng and K. Tang*

[56] The effect of oxygen/nitrogen co-incoporation on the regulation of the growth and properties in boron-doped diamond films”, Chin. Phys.B 32, 118102 (2023). (D. Y. Liu andK. Tang*)

[55] An innovative gas inlet design in a microwave plasma chemical vapor deposition chamber for high-quality, high-speed, and high-efficiency diamond growth”, J. Phys. D: Appl. Phys. 56, 375104 (2023). (W. K. Zhao and K. Tang*)

[54] The boron-phosphorous co-doping scheme for possible n-type diamond from first principles”, Comput. Mater. Sci. 222, 112113 (2023).(K. K. Fan and K. Tang*

[53] Design of a quantum-spin sensor with sub-micron resolution and enhanced optical read-out ability by the nitrogen-vacancy centers in diamond”, J. Mater. Res. 38, 4819(2023).(G. Y. Zhao and K. Tang*

[52] Research of the weak negative thermal quenching (NTQ) effect of nitrogen vacancy centers in nitrogen-doped diamond”, J. Lumin. 254, 119536 (2023).(L. C. Hao and K. Tang*

[51] First-principles investigation on the boron-oxygen complexes in diamond”, Comput. Mater. Sci. 216, 111867 (2023).(M. Zhang and K. Tang*

[50] Suppression and compensation effect of oxygen on heavily boron doping behavior in diamond films”, Chin. Phys. B 32, 038101 (2023).(L. C. Hao and K. Tang*


2022年

[49] “The effect of oxygen on the regulation of the properties in moderately boron-doped diamond films”, Chin. Phys. B 31, 128104 (2022).(D. Y. Liu and K. Tang*

[48] Enhanced Contactless Salt-Collecting Solar Desalination”, ACS Appl. Mater. Interface 14, 34151 (2022)(Y. Bian and K. Tang*

[47] Significantly suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD”, Chin. Phys. B 31, 118102 (2022).(W. K. Zhao and K. Tang*

[46] The origin, characteristics, and suppression of residual nitrogen in a MPCVD diamond growth reactor”, Chin. Phys. B 31, 128106 (2022).(Y. Teng and K. Tang*


2021年及以前

[45] Nitrogen modulation of boron doping behavior for accessible n-type diamond”, APL Mater. 9, 081106 (2021)(D. Y. Liu and K. Tang*

[44] Sustainable Solar Evaporation while Salt Accumulation”, ACS Appl. Mater. Interface 13, 4935 (2021)(封面论文, Y. Bian and K. Tang*

[43] Sustainable Solar Evaporation from Solute Surface via Energy Downconversion”, Global Challenges 5, 2000077 (2021). (邀请论文:清洁饮用水专刊, Y. Bian and K. Tang*

[42] Sulfur regulation of boron doping and growth behavior for high-quality diamond in microwave plasma chemical vapor deposition”, Appl. Phys. Lett.117, 022101 (2020). D. Y. Liu and K. Tang*

[41] Identification and control of defects in N-doped ZnO”, Chin. Sci. Bull. (科学通报) 65, 2708 (2020). (邀请综述, K. Tang*

[40] Synthesis and characterization of Sb-doped ZnO nanowires by chemical vapor deposition”, J. Lumin. 221, 117025 (2020).(Z. R. Yao and K. Tang*

[39] Charge transfer dynamics of CdTe Quantum dots fluorescence quenching induced by ferrous (II) ions”, Appl. Phys. Lett. 116, 012105 (2020).L. C. Hao and K. Tang*

[38] Tailoring of nitrogen-vacancy color centers in diamond epilayers by in-situ sulfur and nitrogen anion engineering”, J. Phys. D: Appl. Phys. 53, 075107 (2020).L. C. Hao and K. Tang*

[37] Carbonized tree-like furry magnolia fruits-based evaporator replicating the feat of plant transpiration”, Global Challenges 3, 1900040 (2019). (通讯作者、正封论文

[36] Synthesis and properties of tellurium-nitrogen co-doped ZnO micro-/nano-rods”, Opt. Mater. Express 9, 652 (2019).(通讯作者)

[35] Toward facile broadband photodetectors based on self-assembled ZnO nanobridges/rubrene heterostructure”, Nanotechnology 30, 065202 (2019).(通讯作者)

[34] Carbonized Bamboos as Excellent 3D Solar Vapor-Generation Devices”, Adv. Mater.Technol. 4, 1800593 (2019). (通讯作者、正封论文

[33] First-principles insights on the electronic and optical properties of ZnO@CNT core@shell nanostructure”, Sci. Rep. 8, 15464 (2018).(通讯作者)

[32] Highly efficient solar steam generation by hybrid plasmonic structured TiN/meso-porous anodized alumina membrane”, J. Mater. Res. 33(22), 3857 (2018).(通讯作者)

[31] Early stage of Cs activation mechanism for In0.53Ga0.47As(001) 2 (24) surfaces: Insights from first-principles calculations”, Appl. Surf. Sci. 457, 150 (2018).(通讯作者)

[30] Photo-assisted Hysteresis of Electronic Transport for ZnO Nanowire Transistors”, Nanotechnology 29, 115204 (2018).(通讯作者)

[29] First-principles study on the structural stability and optoelectronic properties of different Indium component InxGa1-xAs materials”, Mater. Res. Express 5, 015902 (2018).  (通讯作者)

[28] The suppression of zinc interstitial related shallow donors in Te-doped ZnO microrods”, J. Alloy. Compd. 735, 1232 (2018).(通讯作者)

[27] identification and tuning of zinc-site nitrogen-related complexes in ZnO material”, J. Vac. Sci. Technol. A 36, 021503 (2018).(通讯作者)

[26] Behavior and impact of sulfur incorporation in Zinc Oxysulfide alloy grown by metal organic chemical vapor deposition”, Appl. Surf. Sci. 435, 297 (2018).(通讯作者)

[25] Optical fingerprints of donors and acceptors in high-quality NH3-doped ZnO films”, Opt. Mater. Express 7, 1169 (2017).第一作者、通讯作者)

[24] Thermal evolution of zinc interstitial related donors in high-quality NH3-doped ZnO films”, Opt. Mater. Express 7, 593 (2017).第一作者、通讯作者)

[23] Recent progress on the native defects and p-type doping of zinc oxide (Topical review), Chin. Phys. B 26, 047702 (2017)第一作者、邀请综述)

[22] Formation of VZn-NO shallow acceptors with the assistance from tellurium in nitrogen-doped ZnO films”, J. Alloy. Compd. 699, 484 (2017). (第一作者、通讯作者)

[21] Experimental investigation on nitrogen related complex acceptors in nitrogen-doped ZnO films”, J. Alloy. Compd. 696, 590 (2017).(第一作者、通讯作者)

[20] The luminescent inhomogeneity and the distribution of zinc vacancy in N-doped ZnO microrods”, Nanoscale Res. Lett. 11, 511 (2016).(通讯作者)

[19] Identification and control of native defects in N-doped ZnO microrods”, Opt. Mater. Express 6, 2847 (2016).(通讯作者)

[18] High quality ZnO growth, doping, and polarization effect(invited review), J. Semicond. 37, 031001 (2016).第一作者、邀请综述)

[17] The compositional, structural, and magnetic properties of a Fe3O4/Ga2O3/GaN spin injecting hetero-structure grown by metal-organic chemical vapor deposition”, Appl. Surf. Sci. 388, 141 (2016).(通讯作者)

[16] Substrate polarity and surface pretreatment temperature dependence of ZnO homoepitaxy”, Appl. Surf. Sci. 361, 33 (2016).(通讯作者)

[15] The roles of buffer layer thickness on the properties of the ZnO epitaxial films”, Appl. Surf. Sci. 388, 557 (2016).(第一作者、通讯作者)

[14] Effects of indium doping on the crystallographic, morphological, electrical, and optical properties of highly crystalline ZnO films”, J. Alloy. Compd. 653, 643 (2015). (第一作者、通讯作者)

[13] Fabrication and Characterization of Highly Oriented N-Doped ZnO Nanorods by Selective Area Epitaxy”, J. Nanomater. 2015, 854074 (2015).(通讯作者)

[12] Annealing in tellurium and nitrogen co-doped ZnO: The roles of intrinsic zinc defects”, J. Appl. Phys. 117, 135304 (2015).(第一作者)

[11] Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors”, J. Mater. Res. 30, 935 (2015).(通讯作者)

[10] The Zn diffusion induced changes of Fe3O4 films grown on ZnO template by Metal-Organic Chemical Vapor Deposition”, J. Magn. Magn. Mater. 385, 257 (2015).(通讯作者)

[9] Design of an Integrated Gradient-Index Light Condenser for the Light Delivery in a Heat Assisted Magnetic Recording Head”, IEEE Transact. Magn. 50, 3301206 (2014).(第一作者、通讯作者)

[8] Temperature-dependent exciton-related transition energies mediated by carrier concentrations in unintentionally Al-doped ZnO films”, Appl. Phys. Lett. 102, 221905 (2013).(第一作者)

[7] Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen”, J. Appl. Phys. 112, 103534 (2012).(第一作者)

[6] Mutually beneficial doping of tellurium and nitrogen in ZnO films grown by metal-organic chemical vapor deposition”, J. Vac. Sci. Technol. A 30, 051508 (2012).(第一作者)

[5] Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition”, J. Vac. Sci. Technol. A 29, 03A106 (2011).(第一作者)

[4] Tellurium assisted realization of p-type N-doped ZnO”, Appl. Phys. Lett. 96, 242101 (2010).(第一作者)

[3] Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO”, Appl. Phys. Lett. 95, 192106 (2009).(第一作者)

[2] Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition”, Appl. Phys. Lett. 93, 132107 (2008).(第一作者)

[1] pN掺杂ZnO薄膜的MOCVD生长与电学性质, 半导体技术 33, 341 (2008).(第一作者)


联系方式
电话:
邮件:ktang@nju.edu.cn
信箱:潘忠来楼18号信箱
办公地址:仙林校区潘忠来楼428B

联系我们

  • TEL:025-8968 0678

    E-MAIL:jhmin@nju.edu.cn

    ADDRESS: Electronic Building 

    (Panzhonglai Building), 163 Xianlin Ave., Qixia District, Nanjing, Jiangsu Province, 210023